Bimodal ankle-foot prosthesis for enhanced standing stability
نویسندگان
چکیده
منابع مشابه
A universal ankle-foot prosthesis emulator for human locomotion experiments.
Robotic prostheses have the potential to significantly improve mobility for people with lower-limb amputation. Humans exhibit complex responses to mechanical interactions with these devices, however, and computational models are not yet able to predict such responses meaningfully. Experiments therefore play a critical role in development, but have been limited by the use of product-like prototy...
متن کاملPassive Ankle-Foot Prosthesis Prototype with Extended Push-Off
Current commercially available prosthetic feet have succeeded in decreasing the metabolic cost and increasing the speed of walking compared to walking with conventional, mostly solid prosthetic feet. However, there is still a large discrepancy when compared with a non‐disabled gait, and the walking pattern remains strongly disturbed. During the stance phase of the leg, t...
متن کاملActive control of a powered ankle-foot prosthesis
Amputees suffer a higher metabolic demand on their bodies. Passive prostheses seek to reduce this deficit through elastic distribution of the energy inherently dissipated in walking. Yet with no capacity to generate torque they lack truly biomimetic function. The active prosthesis is a solution to this and opens up a world of active control in the timing and magnitude of energy return. Being ab...
متن کاملOptimization of Ankle-Foot Prosthesis with Active Alignment by Passive Elements
Today, often ankle’s active prosthesis is used for transtibial amputated people’s walking, because these prostheses have some advantages such as increasing power and decreasing metabolism. In most of active prosthesis in order to create a movement or increase the force at the push-off, electrical actuators are used like a motor. In cases where a higher-power motor is necessary, the capacity, we...
متن کاملOptimizing prosthesis design to maximize user satisfaction using a tethered robotic ankle-foot prosthesis
Lower-limb prostheses are designed based on observations of how users on average respond to different design features. Prostheses are then marketed on the basis that certain features are appropriate for certain types of individuals, with few options for user customization. This process is unlikely to provide individual users with devices that best suit their needs since it is unclear how to bes...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: PLOS ONE
سال: 2018
ISSN: 1932-6203
DOI: 10.1371/journal.pone.0204512